3.1.16 \(\int (e x)^m (a+b x^n)^2 (A+B x^n) (c+d x^n)^3 \, dx\) [16]

3.1.16.1 Optimal result
3.1.16.2 Mathematica [A] (verified)
3.1.16.3 Rubi [A] (verified)
3.1.16.4 Maple [C] (warning: unable to verify)
3.1.16.5 Fricas [B] (verification not implemented)
3.1.16.6 Sympy [B] (verification not implemented)
3.1.16.7 Maxima [B] (verification not implemented)
3.1.16.8 Giac [B] (verification not implemented)
3.1.16.9 Mupad [B] (verification not implemented)

3.1.16.1 Optimal result

Integrand size = 31, antiderivative size = 310 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\frac {a c^2 (2 A b c+a B c+3 a A d) x^{1+n} (e x)^m}{1+m+n}+\frac {c \left (a B c (2 b c+3 a d)+A \left (b^2 c^2+6 a b c d+3 a^2 d^2\right )\right ) x^{1+2 n} (e x)^m}{1+m+2 n}+\frac {\left (6 a b c d (B c+A d)+a^2 d^2 (3 B c+A d)+b^2 c^2 (B c+3 A d)\right ) x^{1+3 n} (e x)^m}{1+m+3 n}+\frac {d \left (a^2 B d^2+3 b^2 c (B c+A d)+2 a b d (3 B c+A d)\right ) x^{1+4 n} (e x)^m}{1+m+4 n}+\frac {b d^2 (3 b B c+A b d+2 a B d) x^{1+5 n} (e x)^m}{1+m+5 n}+\frac {b^2 B d^3 x^{1+6 n} (e x)^m}{1+m+6 n}+\frac {a^2 A c^3 (e x)^{1+m}}{e (1+m)} \]

output
a*c^2*(3*A*a*d+2*A*b*c+B*a*c)*x^(1+n)*(e*x)^m/(1+m+n)+c*(a*B*c*(3*a*d+2*b* 
c)+A*(3*a^2*d^2+6*a*b*c*d+b^2*c^2))*x^(1+2*n)*(e*x)^m/(1+m+2*n)+(6*a*b*c*d 
*(A*d+B*c)+a^2*d^2*(A*d+3*B*c)+b^2*c^2*(3*A*d+B*c))*x^(1+3*n)*(e*x)^m/(1+m 
+3*n)+d*(a^2*B*d^2+3*b^2*c*(A*d+B*c)+2*a*b*d*(A*d+3*B*c))*x^(1+4*n)*(e*x)^ 
m/(1+m+4*n)+b*d^2*(A*b*d+2*B*a*d+3*B*b*c)*x^(1+5*n)*(e*x)^m/(1+m+5*n)+b^2* 
B*d^3*x^(1+6*n)*(e*x)^m/(1+m+6*n)+a^2*A*c^3*(e*x)^(1+m)/e/(1+m)
 
3.1.16.2 Mathematica [A] (verified)

Time = 1.64 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.85 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=x (e x)^m \left (\frac {a^2 A c^3}{1+m}+\frac {a c^2 (2 A b c+a B c+3 a A d) x^n}{1+m+n}+\frac {c \left (a B c (2 b c+3 a d)+A \left (b^2 c^2+6 a b c d+3 a^2 d^2\right )\right ) x^{2 n}}{1+m+2 n}+\frac {\left (6 a b c d (B c+A d)+a^2 d^2 (3 B c+A d)+b^2 c^2 (B c+3 A d)\right ) x^{3 n}}{1+m+3 n}+\frac {d \left (a^2 B d^2+3 b^2 c (B c+A d)+2 a b d (3 B c+A d)\right ) x^{4 n}}{1+m+4 n}+\frac {b d^2 (3 b B c+A b d+2 a B d) x^{5 n}}{1+m+5 n}+\frac {b^2 B d^3 x^{6 n}}{1+m+6 n}\right ) \]

input
Integrate[(e*x)^m*(a + b*x^n)^2*(A + B*x^n)*(c + d*x^n)^3,x]
 
output
x*(e*x)^m*((a^2*A*c^3)/(1 + m) + (a*c^2*(2*A*b*c + a*B*c + 3*a*A*d)*x^n)/( 
1 + m + n) + (c*(a*B*c*(2*b*c + 3*a*d) + A*(b^2*c^2 + 6*a*b*c*d + 3*a^2*d^ 
2))*x^(2*n))/(1 + m + 2*n) + ((6*a*b*c*d*(B*c + A*d) + a^2*d^2*(3*B*c + A* 
d) + b^2*c^2*(B*c + 3*A*d))*x^(3*n))/(1 + m + 3*n) + (d*(a^2*B*d^2 + 3*b^2 
*c*(B*c + A*d) + 2*a*b*d*(3*B*c + A*d))*x^(4*n))/(1 + m + 4*n) + (b*d^2*(3 
*b*B*c + A*b*d + 2*a*B*d)*x^(5*n))/(1 + m + 5*n) + (b^2*B*d^3*x^(6*n))/(1 
+ m + 6*n))
 
3.1.16.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1040, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx\)

\(\Big \downarrow \) 1040

\(\displaystyle \int \left (c x^{2 n} (e x)^m \left (A \left (3 a^2 d^2+6 a b c d+b^2 c^2\right )+a B c (3 a d+2 b c)\right )+x^{3 n} (e x)^m \left (a^2 d^2 (A d+3 B c)+6 a b c d (A d+B c)+b^2 c^2 (3 A d+B c)\right )+d x^{4 n} (e x)^m \left (a^2 B d^2+2 a b d (A d+3 B c)+3 b^2 c (A d+B c)\right )+a^2 A c^3 (e x)^m+a c^2 x^n (e x)^m (3 a A d+a B c+2 A b c)+b d^2 x^{5 n} (e x)^m (2 a B d+A b d+3 b B c)+b^2 B d^3 x^{6 n} (e x)^m\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {c x^{2 n+1} (e x)^m \left (A \left (3 a^2 d^2+6 a b c d+b^2 c^2\right )+a B c (3 a d+2 b c)\right )}{m+2 n+1}+\frac {x^{3 n+1} (e x)^m \left (a^2 d^2 (A d+3 B c)+6 a b c d (A d+B c)+b^2 c^2 (3 A d+B c)\right )}{m+3 n+1}+\frac {d x^{4 n+1} (e x)^m \left (a^2 B d^2+2 a b d (A d+3 B c)+3 b^2 c (A d+B c)\right )}{m+4 n+1}+\frac {a^2 A c^3 (e x)^{m+1}}{e (m+1)}+\frac {a c^2 x^{n+1} (e x)^m (3 a A d+a B c+2 A b c)}{m+n+1}+\frac {b d^2 x^{5 n+1} (e x)^m (2 a B d+A b d+3 b B c)}{m+5 n+1}+\frac {b^2 B d^3 x^{6 n+1} (e x)^m}{m+6 n+1}\)

input
Int[(e*x)^m*(a + b*x^n)^2*(A + B*x^n)*(c + d*x^n)^3,x]
 
output
(a*c^2*(2*A*b*c + a*B*c + 3*a*A*d)*x^(1 + n)*(e*x)^m)/(1 + m + n) + (c*(a* 
B*c*(2*b*c + 3*a*d) + A*(b^2*c^2 + 6*a*b*c*d + 3*a^2*d^2))*x^(1 + 2*n)*(e* 
x)^m)/(1 + m + 2*n) + ((6*a*b*c*d*(B*c + A*d) + a^2*d^2*(3*B*c + A*d) + b^ 
2*c^2*(B*c + 3*A*d))*x^(1 + 3*n)*(e*x)^m)/(1 + m + 3*n) + (d*(a^2*B*d^2 + 
3*b^2*c*(B*c + A*d) + 2*a*b*d*(3*B*c + A*d))*x^(1 + 4*n)*(e*x)^m)/(1 + m + 
 4*n) + (b*d^2*(3*b*B*c + A*b*d + 2*a*B*d)*x^(1 + 5*n)*(e*x)^m)/(1 + m + 5 
*n) + (b^2*B*d^3*x^(1 + 6*n)*(e*x)^m)/(1 + m + 6*n) + (a^2*A*c^3*(e*x)^(1 
+ m))/(e*(1 + m))
 

3.1.16.3.1 Defintions of rubi rules used

rule 1040
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[ 
(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, m, n}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.1.16.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 5.10 (sec) , antiderivative size = 11356, normalized size of antiderivative = 36.63

method result size
risch \(\text {Expression too large to display}\) \(11356\)
parallelrisch \(\text {Expression too large to display}\) \(15203\)

input
int((e*x)^m*(a+b*x^n)^2*(A+B*x^n)*(c+d*x^n)^3,x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.1.16.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6557 vs. \(2 (310) = 620\).

Time = 0.48 (sec) , antiderivative size = 6557, normalized size of antiderivative = 21.15 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\text {Too large to display} \]

input
integrate((e*x)^m*(a+b*x^n)^2*(A+B*x^n)*(c+d*x^n)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.1.16.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 168099 vs. \(2 (311) = 622\).

Time = 23.29 (sec) , antiderivative size = 168099, normalized size of antiderivative = 542.25 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\text {Too large to display} \]

input
integrate((e*x)**m*(a+b*x**n)**2*(A+B*x**n)*(c+d*x**n)**3,x)
 
output
Piecewise(((A + B)*(a + b)**2*(c + d)**3*log(x)/e, Eq(m, -1) & Eq(n, 0)), 
((A*a**2*c**3*log(x) + 3*A*a**2*c**2*d*x**n/n + 3*A*a**2*c*d**2*x**(2*n)/( 
2*n) + A*a**2*d**3*x**(3*n)/(3*n) + 2*A*a*b*c**3*x**n/n + 3*A*a*b*c**2*d*x 
**(2*n)/n + 2*A*a*b*c*d**2*x**(3*n)/n + A*a*b*d**3*x**(4*n)/(2*n) + A*b**2 
*c**3*x**(2*n)/(2*n) + A*b**2*c**2*d*x**(3*n)/n + 3*A*b**2*c*d**2*x**(4*n) 
/(4*n) + A*b**2*d**3*x**(5*n)/(5*n) + B*a**2*c**3*x**n/n + 3*B*a**2*c**2*d 
*x**(2*n)/(2*n) + B*a**2*c*d**2*x**(3*n)/n + B*a**2*d**3*x**(4*n)/(4*n) + 
B*a*b*c**3*x**(2*n)/n + 2*B*a*b*c**2*d*x**(3*n)/n + 3*B*a*b*c*d**2*x**(4*n 
)/(2*n) + 2*B*a*b*d**3*x**(5*n)/(5*n) + B*b**2*c**3*x**(3*n)/(3*n) + 3*B*b 
**2*c**2*d*x**(4*n)/(4*n) + 3*B*b**2*c*d**2*x**(5*n)/(5*n) + B*b**2*d**3*x 
**(6*n)/(6*n))/e, Eq(m, -1)), (A*a**2*c**3*Piecewise((0**(-6*n - 1)*x, Eq( 
e, 0)), (Piecewise((-1/(6*n*(e*x)**(6*n)), Ne(n, 0)), (log(e*x), True))/e, 
 True)) + 3*A*a**2*c**2*d*Piecewise((-x*x**n*(e*x)**(-6*n - 1)/(5*n), Ne(n 
, 0)), (x*x**n*(e*x)**(-6*n - 1)*log(x), True)) + 3*A*a**2*c*d**2*Piecewis 
e((-x*x**(2*n)*(e*x)**(-6*n - 1)/(4*n), Ne(n, 0)), (x*x**(2*n)*(e*x)**(-6* 
n - 1)*log(x), True)) + A*a**2*d**3*Piecewise((-x*x**(3*n)*(e*x)**(-6*n - 
1)/(3*n), Ne(n, 0)), (x*x**(3*n)*(e*x)**(-6*n - 1)*log(x), True)) + 2*A*a* 
b*c**3*Piecewise((-x*x**n*(e*x)**(-6*n - 1)/(5*n), Ne(n, 0)), (x*x**n*(e*x 
)**(-6*n - 1)*log(x), True)) + 6*A*a*b*c**2*d*Piecewise((-x*x**(2*n)*(e*x) 
**(-6*n - 1)/(4*n), Ne(n, 0)), (x*x**(2*n)*(e*x)**(-6*n - 1)*log(x), Tr...
 
3.1.16.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 748 vs. \(2 (310) = 620\).

Time = 0.29 (sec) , antiderivative size = 748, normalized size of antiderivative = 2.41 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\frac {B b^{2} d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 6 \, n \log \left (x\right )\right )}}{m + 6 \, n + 1} + \frac {3 \, B b^{2} c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 5 \, n \log \left (x\right )\right )}}{m + 5 \, n + 1} + \frac {2 \, B a b d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 5 \, n \log \left (x\right )\right )}}{m + 5 \, n + 1} + \frac {A b^{2} d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 5 \, n \log \left (x\right )\right )}}{m + 5 \, n + 1} + \frac {3 \, B b^{2} c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + 4 \, n \log \left (x\right )\right )}}{m + 4 \, n + 1} + \frac {6 \, B a b c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 4 \, n \log \left (x\right )\right )}}{m + 4 \, n + 1} + \frac {3 \, A b^{2} c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 4 \, n \log \left (x\right )\right )}}{m + 4 \, n + 1} + \frac {B a^{2} d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 4 \, n \log \left (x\right )\right )}}{m + 4 \, n + 1} + \frac {2 \, A a b d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 4 \, n \log \left (x\right )\right )}}{m + 4 \, n + 1} + \frac {B b^{2} c^{3} e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {6 \, B a b c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {3 \, A b^{2} c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {3 \, B a^{2} c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {6 \, A a b c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {A a^{2} d^{3} e^{m} x e^{\left (m \log \left (x\right ) + 3 \, n \log \left (x\right )\right )}}{m + 3 \, n + 1} + \frac {2 \, B a b c^{3} e^{m} x e^{\left (m \log \left (x\right ) + 2 \, n \log \left (x\right )\right )}}{m + 2 \, n + 1} + \frac {A b^{2} c^{3} e^{m} x e^{\left (m \log \left (x\right ) + 2 \, n \log \left (x\right )\right )}}{m + 2 \, n + 1} + \frac {3 \, B a^{2} c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + 2 \, n \log \left (x\right )\right )}}{m + 2 \, n + 1} + \frac {6 \, A a b c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + 2 \, n \log \left (x\right )\right )}}{m + 2 \, n + 1} + \frac {3 \, A a^{2} c d^{2} e^{m} x e^{\left (m \log \left (x\right ) + 2 \, n \log \left (x\right )\right )}}{m + 2 \, n + 1} + \frac {B a^{2} c^{3} e^{m} x e^{\left (m \log \left (x\right ) + n \log \left (x\right )\right )}}{m + n + 1} + \frac {2 \, A a b c^{3} e^{m} x e^{\left (m \log \left (x\right ) + n \log \left (x\right )\right )}}{m + n + 1} + \frac {3 \, A a^{2} c^{2} d e^{m} x e^{\left (m \log \left (x\right ) + n \log \left (x\right )\right )}}{m + n + 1} + \frac {\left (e x\right )^{m + 1} A a^{2} c^{3}}{e {\left (m + 1\right )}} \]

input
integrate((e*x)^m*(a+b*x^n)^2*(A+B*x^n)*(c+d*x^n)^3,x, algorithm="maxima")
 
output
B*b^2*d^3*e^m*x*e^(m*log(x) + 6*n*log(x))/(m + 6*n + 1) + 3*B*b^2*c*d^2*e^ 
m*x*e^(m*log(x) + 5*n*log(x))/(m + 5*n + 1) + 2*B*a*b*d^3*e^m*x*e^(m*log(x 
) + 5*n*log(x))/(m + 5*n + 1) + A*b^2*d^3*e^m*x*e^(m*log(x) + 5*n*log(x))/ 
(m + 5*n + 1) + 3*B*b^2*c^2*d*e^m*x*e^(m*log(x) + 4*n*log(x))/(m + 4*n + 1 
) + 6*B*a*b*c*d^2*e^m*x*e^(m*log(x) + 4*n*log(x))/(m + 4*n + 1) + 3*A*b^2* 
c*d^2*e^m*x*e^(m*log(x) + 4*n*log(x))/(m + 4*n + 1) + B*a^2*d^3*e^m*x*e^(m 
*log(x) + 4*n*log(x))/(m + 4*n + 1) + 2*A*a*b*d^3*e^m*x*e^(m*log(x) + 4*n* 
log(x))/(m + 4*n + 1) + B*b^2*c^3*e^m*x*e^(m*log(x) + 3*n*log(x))/(m + 3*n 
 + 1) + 6*B*a*b*c^2*d*e^m*x*e^(m*log(x) + 3*n*log(x))/(m + 3*n + 1) + 3*A* 
b^2*c^2*d*e^m*x*e^(m*log(x) + 3*n*log(x))/(m + 3*n + 1) + 3*B*a^2*c*d^2*e^ 
m*x*e^(m*log(x) + 3*n*log(x))/(m + 3*n + 1) + 6*A*a*b*c*d^2*e^m*x*e^(m*log 
(x) + 3*n*log(x))/(m + 3*n + 1) + A*a^2*d^3*e^m*x*e^(m*log(x) + 3*n*log(x) 
)/(m + 3*n + 1) + 2*B*a*b*c^3*e^m*x*e^(m*log(x) + 2*n*log(x))/(m + 2*n + 1 
) + A*b^2*c^3*e^m*x*e^(m*log(x) + 2*n*log(x))/(m + 2*n + 1) + 3*B*a^2*c^2* 
d*e^m*x*e^(m*log(x) + 2*n*log(x))/(m + 2*n + 1) + 6*A*a*b*c^2*d*e^m*x*e^(m 
*log(x) + 2*n*log(x))/(m + 2*n + 1) + 3*A*a^2*c*d^2*e^m*x*e^(m*log(x) + 2* 
n*log(x))/(m + 2*n + 1) + B*a^2*c^3*e^m*x*e^(m*log(x) + n*log(x))/(m + n + 
 1) + 2*A*a*b*c^3*e^m*x*e^(m*log(x) + n*log(x))/(m + n + 1) + 3*A*a^2*c^2* 
d*e^m*x*e^(m*log(x) + n*log(x))/(m + n + 1) + (e*x)^(m + 1)*A*a^2*c^3/(e*( 
m + 1))
 
3.1.16.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 70422 vs. \(2 (310) = 620\).

Time = 0.85 (sec) , antiderivative size = 70422, normalized size of antiderivative = 227.17 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\text {Too large to display} \]

input
integrate((e*x)^m*(a+b*x^n)^2*(A+B*x^n)*(c+d*x^n)^3,x, algorithm="giac")
 
output
(B*b^2*d^3*m^6*x*x^(6*n)*e^(m*log(e) + m*log(x)) + 15*B*b^2*d^3*m^5*n*x*x^ 
(6*n)*e^(m*log(e) + m*log(x)) + 85*B*b^2*d^3*m^4*n^2*x*x^(6*n)*e^(m*log(e) 
 + m*log(x)) + 225*B*b^2*d^3*m^3*n^3*x*x^(6*n)*e^(m*log(e) + m*log(x)) + 2 
74*B*b^2*d^3*m^2*n^4*x*x^(6*n)*e^(m*log(e) + m*log(x)) + 120*B*b^2*d^3*m*n 
^5*x*x^(6*n)*e^(m*log(e) + m*log(x)) + 3*B*b^2*c*d^2*m^6*x*x^(5*n)*e^(m*lo 
g(e) + m*log(x)) + 2*B*a*b*d^3*m^6*x*x^(5*n)*e^(m*log(e) + m*log(x)) + A*b 
^2*d^3*m^6*x*x^(5*n)*e^(m*log(e) + m*log(x)) + B*b^2*d^3*m^6*x*x^(5*n)*e^( 
m*log(e) + m*log(x)) + 48*B*b^2*c*d^2*m^5*n*x*x^(5*n)*e^(m*log(e) + m*log( 
x)) + 32*B*a*b*d^3*m^5*n*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 16*A*b^2*d^3* 
m^5*n*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 15*B*b^2*d^3*m^5*n*x*x^(5*n)*e^( 
m*log(e) + m*log(x)) + 285*B*b^2*c*d^2*m^4*n^2*x*x^(5*n)*e^(m*log(e) + m*l 
og(x)) + 190*B*a*b*d^3*m^4*n^2*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 95*A*b^ 
2*d^3*m^4*n^2*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 85*B*b^2*d^3*m^4*n^2*x*x 
^(5*n)*e^(m*log(e) + m*log(x)) + 780*B*b^2*c*d^2*m^3*n^3*x*x^(5*n)*e^(m*lo 
g(e) + m*log(x)) + 520*B*a*b*d^3*m^3*n^3*x*x^(5*n)*e^(m*log(e) + m*log(x)) 
 + 260*A*b^2*d^3*m^3*n^3*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 225*B*b^2*d^3 
*m^3*n^3*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 972*B*b^2*c*d^2*m^2*n^4*x*x^( 
5*n)*e^(m*log(e) + m*log(x)) + 648*B*a*b*d^3*m^2*n^4*x*x^(5*n)*e^(m*log(e) 
 + m*log(x)) + 324*A*b^2*d^3*m^2*n^4*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 2 
74*B*b^2*d^3*m^2*n^4*x*x^(5*n)*e^(m*log(e) + m*log(x)) + 432*B*b^2*c*d^...
 
3.1.16.9 Mupad [B] (verification not implemented)

Time = 10.84 (sec) , antiderivative size = 1882, normalized size of antiderivative = 6.07 \[ \int (e x)^m \left (a+b x^n\right )^2 \left (A+B x^n\right ) \left (c+d x^n\right )^3 \, dx=\text {Too large to display} \]

input
int((e*x)^m*(A + B*x^n)*(a + b*x^n)^2*(c + d*x^n)^3,x)
 
output
(x*x^(3*n)*(e*x)^m*(A*a^2*d^3 + B*b^2*c^3 + 3*A*b^2*c^2*d + 3*B*a^2*c*d^2 
+ 6*A*a*b*c*d^2 + 6*B*a*b*c^2*d)*(5*m + 18*n + 72*m*n + 363*m*n^2 + 108*m^ 
2*n + 744*m*n^3 + 72*m^3*n + 508*m*n^4 + 18*m^4*n + 10*m^2 + 10*m^3 + 5*m^ 
4 + m^5 + 121*n^2 + 372*n^3 + 508*n^4 + 240*n^5 + 363*m^2*n^2 + 372*m^2*n^ 
3 + 121*m^3*n^2 + 1))/(6*m + 21*n + 105*m*n + 700*m*n^2 + 210*m^2*n + 2205 
*m*n^3 + 210*m^3*n + 3248*m*n^4 + 105*m^4*n + 1764*m*n^5 + 21*m^5*n + 15*m 
^2 + 20*m^3 + 15*m^4 + 6*m^5 + m^6 + 175*n^2 + 735*n^3 + 1624*n^4 + 1764*n 
^5 + 720*n^6 + 1050*m^2*n^2 + 2205*m^2*n^3 + 700*m^3*n^2 + 1624*m^2*n^4 + 
735*m^3*n^3 + 175*m^4*n^2 + 1) + (A*a^2*c^3*x*(e*x)^m)/(m + 1) + (c*x*x^(2 
*n)*(e*x)^m*(3*A*a^2*d^2 + A*b^2*c^2 + 2*B*a*b*c^2 + 3*B*a^2*c*d + 6*A*a*b 
*c*d)*(5*m + 19*n + 76*m*n + 411*m*n^2 + 114*m^2*n + 922*m*n^3 + 76*m^3*n 
+ 702*m*n^4 + 19*m^4*n + 10*m^2 + 10*m^3 + 5*m^4 + m^5 + 137*n^2 + 461*n^3 
 + 702*n^4 + 360*n^5 + 411*m^2*n^2 + 461*m^2*n^3 + 137*m^3*n^2 + 1))/(6*m 
+ 21*n + 105*m*n + 700*m*n^2 + 210*m^2*n + 2205*m*n^3 + 210*m^3*n + 3248*m 
*n^4 + 105*m^4*n + 1764*m*n^5 + 21*m^5*n + 15*m^2 + 20*m^3 + 15*m^4 + 6*m^ 
5 + m^6 + 175*n^2 + 735*n^3 + 1624*n^4 + 1764*n^5 + 720*n^6 + 1050*m^2*n^2 
 + 2205*m^2*n^3 + 700*m^3*n^2 + 1624*m^2*n^4 + 735*m^3*n^3 + 175*m^4*n^2 + 
 1) + (d*x*x^(4*n)*(e*x)^m*(B*a^2*d^2 + 3*B*b^2*c^2 + 2*A*a*b*d^2 + 3*A*b^ 
2*c*d + 6*B*a*b*c*d)*(5*m + 17*n + 68*m*n + 321*m*n^2 + 102*m^2*n + 614*m* 
n^3 + 68*m^3*n + 396*m*n^4 + 17*m^4*n + 10*m^2 + 10*m^3 + 5*m^4 + m^5 +...